Thursday 23 November 2017

Moving average eviews


Ao calcular uma média móvel em execução, colocar a média no período de tempo médio faz sentido No exemplo anterior, calculamos a média dos três primeiros períodos de tempo e colocá-lo próximo ao período 3. Poderíamos ter colocado a média no meio da Intervalo de tempo de três períodos, ou seja, próximo ao período 2. Isso funciona bem com períodos de tempo ímpar, mas não é tão bom para mesmo períodos de tempo. Então, onde colocamos a primeira média móvel quando M 4 Tecnicamente, a Média Móvel cairá em t 2,5, 3,5. Para evitar esse problema, suavizamos as MAs usando M 2. Assim, suavizamos os valores suavizados Se formos uma média de um número par de termos, precisamos suavizar os valores suavizados A tabela a seguir mostra os resultados usando M 4.A série de tempo é uma seqüência Das observações de uma variável aleatória periódica. Exemplos disso são a demanda mensal por um produto, a matrícula anual de calouros em um departamento da universidade e os fluxos diários em um rio. As séries cronológicas são importantes para a pesquisa operacional, porque muitas vezes são os impulsionadores dos modelos de decisão. Um modelo de inventário requer estimativas de demandas futuras, um planejamento de curso e modelo de pessoal para um departamento universitário requer estimativas de entrada de estudantes futuros e um modelo para fornecer avisos para a população em uma bacia hidrográfica requer estimativas de fluxos de rios para o futuro imediato. A análise de séries temporais fornece ferramentas para selecionar um modelo que descreve as séries temporais e usar o modelo para prever eventos futuros. Modelar a série temporal é um problema estatístico porque os dados observados são usados ​​em procedimentos computacionais para estimar os coeficientes de um suposto modelo. Os modelos assumem que as observações variam aleatoriamente sobre um valor médio subjacente que é uma função do tempo. Nessas páginas, restringimos a atenção ao uso de dados históricos de séries temporais para estimar um modelo dependente do tempo. Os métodos são apropriados para a previsão automática e de curto prazo de informações freqüentemente usadas onde as causas subjacentes da variação do tempo não estão mudando marcadamente no tempo. Na prática, as previsões derivadas por esses métodos são posteriormente modificadas por analistas humanos que incorporam informações não disponíveis a partir dos dados históricos. Nosso propósito principal nesta seção é apresentar as equações para os quatro métodos de previsão usados ​​no suplemento Forecasting: média móvel, suavização exponencial, regressão e suavização exponencial dupla. Estes são chamados de métodos de suavização. Métodos não considerados incluem a previsão qualitativa, regressão múltipla, e métodos autorregressivos (ARIMA). Aqueles interessados ​​em uma cobertura mais ampla devem visitar o site Previsões Princípios ou ler um dos vários excelentes livros sobre o tema. Usamos o livro Previsão. Por Makridakis, Wheelwright e McGee, John Wiley amp Sons, 1983. Para usar o pasta de trabalho Exemplos do Excel, você deve ter o suplemento de Previsão instalado. Escolha o comando Relink para estabelecer os links para o suplemento. Esta página descreve os modelos utilizados para previsão simples e a notação utilizada para a análise. Este método de previsão mais simples é a previsão média móvel. O método simplesmente médias das últimas m observações. É útil para séries temporais com uma média em mudança lenta. Este método considera todo o passado na sua previsão, mas pesa a experiência recente mais fortemente do que menos recente. Os cálculos são simples porque apenas a estimativa do período anterior e os dados atuais determinam a nova estimativa. O método é útil para séries temporais com uma média em mudança lenta. O método da média móvel não responde bem a uma série temporal que aumenta ou diminui com o tempo. Aqui nós incluímos um termo de tendência linear no modelo. O método de regressão aproxima o modelo construindo uma equação linear que fornece o ajuste de mínimos quadrados às últimas observações m. Visão geral Visão geral: Gerenciamento de dados Parte 3: Gerenciamento sofisticado de dados Ferramentas analíticas poderosas são úteis somente se você puder trabalhar facilmente com seus dados. EViews fornece a mais ampla gama de ferramentas de gerenciamento de dados disponíveis em qualquer software econométrico. A partir de sua extensa biblioteca de funções matemáticas, estatísticas, data, cadeia e série de tempo e funções, para suporte abrangente para dados numéricos, caracteres e data, EViews oferece os recursos de tratamento de dados que você chegou a esperar do software estatístico moderno. Extensa biblioteca de funções O EViews inclui uma extensa biblioteca de funções para trabalhar com dados. Além das funções matemáticas e trigonométricas padrão, o EViews fornece funções para estatísticas descritivas, estatísticas cumulativas e em movimento, estatísticas por grupo, funções especiais, operações especializadas de datas e séries temporais, arquivo de trabalho, mapa de valores e cálculos financeiros. EViews também fornece geradores de números aleatórios (Knuth, LEcuyer ou Mersenne-Twister), funções de densidade e funções de distribuição cumulativa para dezoito distribuições diferentes. Estes podem ser usados ​​na geração de novas séries ou no cálculo de expressões escalares e de matriz. EViews oferece uma extensa biblioteca de funções. Manuseio sofisticado de expressões EViews ferramentas poderosas para manipulação de expressão significa que você pode usar expressões praticamente em qualquer lugar que você usaria uma série. Você não tem que criar novas variáveis ​​para trabalhar com o logaritmo de Y, a média móvel de W, ou a relação de X para Y (ou qualquer outra expressão válida). Em vez disso, você pode usar a expressão na computação estatística descritiva, como parte de uma equação ou especificação do modelo, ou na construção de gráficos. Quando você prevê usando uma equação com uma expressão para a variável dependente, EViews (se possível) permitir que você prever a variável dependente subjacente e irá ajustar o intervalo de confiança estimado em conformidade. Por exemplo, se a variável dependente for especificada como LOG (G), você pode optar por prever o log ou o nível de G e calcular o intervalo de confiança apropriado, possivelmente assimétrico. Trabalhar diretamente com expressões no lugar de variáveis. Links, Fórmulas e Valores Os objetos Link do Maps permitem criar séries que ligam a dados contidos em outros arquivos de trabalho ou páginas de arquivo de trabalho. As hiperligações permitem-lhe combinar dados em diferentes frequências ou combinar a intercalação de dados de uma página de resumo numa página individual de modo a que os dados sejam actualizados dinamicamente sempre que os dados subjacentes mudam. Da mesma forma, dentro de um arquivo de trabalho, as fórmulas podem ser atribuídas a séries de dados para que as séries de dados sejam recalculadas automaticamente sempre que os dados subjacentes são modificados. Os rótulos de valores (por exemplo QuotHighquot, quotMedquot, quotLowquot, correspondente a 2, 1, 0) podem ser aplicados a séries numéricas ou alfa de modo que os dados categóricos possam ser apresentados com rótulos significativos. As funções internas permitem que você trabalhe com os valores subjacentes ou mapeados ao executar cálculos. Links podem ser usados ​​para conversão de freqüência dinâmica ou fusão de correspondência. Estruturas de Dados e Tipos EViews pode manipular estruturas de dados complexas, incluindo dados datados regulares e irregulares, dados de corte transversal com identificadores de observação e dados de painel datados e não datados. Além dos dados numéricos, um arquivo de trabalho do EViews também pode conter dados alfanuméricos (seqüência de caracteres) e séries contendo datas, todos os quais podem ser manipulados usando uma extensa biblioteca de funções. EViews também fornece uma ampla gama de ferramentas para trabalhar com conjuntos de dados (workfiles), dados incluindo a capacidade de combinar séries por critérios complexos de combinação de correspondência e procedimentos de arquivo de trabalho para alterar a estrutura de seus dados: juntar, anexar, subconjunto, redimensionar, classificar e Remodelar (pilha e descompactar). Arquivos de trabalho EViews podem ser altamente estruturados. Enterprise Edition Suporte para ODBC, FAME TM. DRIBase e Haver Analytics Databases Como parte do EViews Enterprise Edition (uma opção de custo extra sobre EViews Standard Edition), é fornecido suporte para acesso a dados contidos em bancos de dados relacionais (por meio de drivers ODBC) e a bancos de dados em uma variedade de formatos proprietários usados Por dados comerciais e fornecedores de banco de dados. Open Database Connectivity (ODBC) é um padrão suportado por muitos sistemas de banco de dados relacional incluindo Oracle, Microsoft SQL Server e IBM DB2. EViews permite ler ou gravar tabelas inteiras de bancos de dados ODBC ou criar um novo arquivo de trabalho a partir dos resultados de uma consulta SQL. EViews Enterprise Edition também suporta acesso a bancos de dados de formato FAME TM (tanto locais quanto baseados em servidores) Global Insights bancos de dados DRIPro e DRIBase, bancos de dados Haver Analytics DLX, Datastream, FactSet e Moodys Economy. A interface de banco de dados EViews familiar e fácil de usar foi estendida a esses formatos de dados para que você possa trabalhar com bancos de dados estrangeiros com a mesma facilidade com que os bancos de dados EViews nativos. Conversão de freqüência Quando você importa dados de um banco de dados ou de outra página de arquivo de trabalho ou de arquivo de trabalho, ele é convertido automaticamente para a freqüência do seu projeto atual. EViews oferece muitas opções para a conversão de freqüência e inclui suporte para a conversão de dados diários, semanais ou de frequência irregular. Série pode ser atribuído um método de conversão preferido, permitindo que você use diferentes métodos para diferentes séries sem ter que especificar o método de conversão sempre que uma série é acessada. Você pode até criar links para que as séries de dados convertidos em freqüência sejam recalculadas automaticamente sempre que os dados subjacentes forem modificados. Especifique uma conversão automática específica de série ou selecione um método específico. Para informações de vendas, por favor envie um e-mail para saleseviews Para suporte técnico envie um email para supporteviews Inclua seu número de série com toda a correspondência de e-mail. Para obter informações de contato adicionais, consulte nossa página Sobre. Um RIMA significa Autoregressive Integrated Moving Average models. Univariada (vetor único) ARIMA é uma técnica de previsão que projeta os valores futuros de uma série baseada inteiramente em sua própria inércia. Sua principal aplicação é na área de previsão de curto prazo, exigindo pelo menos 40 pontos de dados históricos. Ele funciona melhor quando seus dados exibem um padrão estável ou consistente ao longo do tempo com uma quantidade mínima de outliers. Às vezes chamado Box-Jenkins (após os autores originais), ARIMA é geralmente superior às técnicas de suavização exponencial quando os dados são razoavelmente longos ea correlação entre as observações passadas é estável. Se os dados forem curtos ou altamente voláteis, então algum método de alisamento pode funcionar melhor. Se você não tiver pelo menos 38 pontos de dados, você deve considerar algum outro método que ARIMA. O primeiro passo na aplicação da metodologia ARIMA é verificar a estacionaridade. A estacionariedade implica que a série permanece a um nível razoavelmente constante ao longo do tempo. Se existe uma tendência, como na maioria das aplicações econômicas ou de negócios, os dados NÃO são estacionários. Os dados também devem mostrar uma variação constante em suas flutuações ao longo do tempo. Isto é facilmente visto com uma série que é fortemente sazonal e crescendo a um ritmo mais rápido. Nesse caso, os altos e baixos da sazonalidade se tornarão mais dramáticos ao longo do tempo. Sem que estas condições de estacionaridade sejam satisfeitas, muitos dos cálculos associados ao processo não podem ser calculados. Se um gráfico gráfico dos dados indica nonstationarity, então você deve diferenciar a série. A diferenciação é uma excelente maneira de transformar uma série não-estacionária em uma estacionária. Isto é feito subtraindo a observação no período atual do anterior. Se essa transformação é feita apenas uma vez para uma série, você diz que os dados foram primeiramente diferenciados. Este processo elimina essencialmente a tendência se sua série está crescendo em uma taxa razoavelmente constante. Se ele está crescendo a uma taxa crescente, você pode aplicar o mesmo procedimento e diferença os dados novamente. Seus dados seriam então segundo diferenciados. Autocorrelações são valores numéricos que indicam como uma série de dados está relacionada a si mesma ao longo do tempo. Mais precisamente, ele mede quão fortemente os valores de dados em um número específico de períodos separados estão correlacionados entre si ao longo do tempo. O número de períodos separados é geralmente chamado de atraso. Por exemplo, uma autocorrelação no intervalo 1 mede como os valores 1 intervalo de tempo são correlacionados um ao outro ao longo da série. Uma autocorrelação no intervalo 2 mede como os dados dois períodos separados estão correlacionados ao longo da série. As autocorrelações podem variar de 1 a -1. Um valor próximo a 1 indica uma alta correlação positiva, enquanto um valor próximo de -1 implica uma correlação negativa elevada. Essas medidas são mais frequentemente avaliadas através de gráficos gráficos chamados correlagramas. Um correlagram traça os valores de autocorrelação para uma dada série em diferentes defasagens. Isto é referido como a função de autocorrelação e é muito importante no método ARIMA. A metodologia ARIMA tenta descrever os movimentos em séries temporais estacionárias como uma função do que são chamados parâmetros auto-regressivos e de média móvel. Estes são referidos como parâmetros AR (autoregessive) e parâmetros MA (média móvel). Um modelo AR com apenas 1 parâmetro pode ser escrito como. X (t) A (1) X (t-1) E (t) onde X (t) séries temporais sob investigação A (1) o parâmetro autorregressivo de ordem 1 X (t-1) (T) o termo de erro do modelo Isto simplesmente significa que qualquer valor dado X (t) pode ser explicado por alguma função de seu valor anterior, X (t-1), mais algum erro aleatório inexplicável, E (t). Se o valor estimado de A (1) fosse .30, então o valor atual da série estaria relacionado a 30 de seu valor 1 período atrás. Naturalmente, a série poderia estar relacionada a mais do que apenas um valor passado. Por exemplo, X (t) A (1) X (t-1) A (2) X (t-2) E (t) Isso indica que o valor atual da série é uma combinação dos dois valores imediatamente anteriores, X (t-1) e X (t-2), mais algum erro aleatório E (t). Nosso modelo é agora um modelo autorregressivo de ordem 2. Modelos de média móvel: um segundo tipo de modelo Box-Jenkins é chamado de modelo de média móvel. Embora estes modelos parecem muito semelhantes ao modelo AR, o conceito por trás deles é bastante diferente. Os parâmetros de média móvel relacionam o que acontece no período t apenas aos erros aleatórios que ocorreram em períodos de tempo passados, isto é, E (t-1), E (t-2), etc., em vez de X (t-1), X T-2), (Xt-3) como nas abordagens autorregressivas. Um modelo de média móvel com um termo MA pode ser escrito da seguinte forma. O termo B (1) é chamado de MA de ordem 1. O sinal negativo na frente do parâmetro é usado apenas para convenção e normalmente é impresso Automaticamente pela maioria dos programas de computador. O modelo acima diz simplesmente que qualquer valor dado de X (t) está diretamente relacionado somente ao erro aleatório no período anterior, E (t-1) e ao termo de erro atual, E (t). Como no caso de modelos autorregressivos, os modelos de média móvel podem ser estendidos a estruturas de ordem superior cobrindo diferentes combinações e comprimentos médios móveis. A metodologia ARIMA também permite a construção de modelos que incorporem parâmetros de média autorregressiva e média móvel. Estes modelos são frequentemente referidos como modelos mistos. Embora isso torne uma ferramenta de previsão mais complicada, a estrutura pode de fato simular melhor a série e produzir uma previsão mais precisa. Modelos puros implicam que a estrutura consiste apenas de AR ou MA parâmetros - não ambos. Os modelos desenvolvidos por esta abordagem são geralmente chamados de modelos ARIMA porque eles usam uma combinação de auto-regressão (RA), integração (I) - referindo-se ao processo inverso de diferenciação para produzir as operações de previsão e de média móvel (MA). Um modelo ARIMA é geralmente indicado como ARIMA (p, d, q). Isso representa a ordem dos componentes autorregressivos (p), o número de operadores de diferenciação (d) e a ordem mais alta do termo médio móvel. Por exemplo, ARIMA (2,1,1) significa que você tem um modelo autorregressivo de segunda ordem com um componente de média móvel de primeira ordem cuja série foi diferenciada uma vez para induzir a estacionaridade. Escolhendo a Especificação Direita: O principal problema no clássico Box-Jenkins está tentando decidir qual especificação ARIMA usar - i. e. Quantos parâmetros AR e / ou MA devem ser incluídos. Isto é o que muito de Box-Jenkings 1976 foi dedicado ao processo de identificação. Ela dependia da avaliação gráfica e numérica das funções de autocorrelação da amostra e autocorrelação parcial. Bem, para os seus modelos básicos, a tarefa não é muito difícil. Cada um tem funções de autocorrelação que parecem uma certa maneira. No entanto, quando você subir em complexidade, os padrões não são tão facilmente detectados. Para tornar as questões mais difíceis, seus dados representam apenas uma amostra do processo subjacente. Isto significa que os erros de amostragem (outliers, erro de medição, etc.) podem distorcer o processo de identificação teórica. É por isso que a modelagem ARIMA tradicional é uma arte ao invés de uma aplicação science. Spreadsheet de ajuste sazonal e suavização exponencial É simples de executar ajuste sazonal e ajuste exponencial modelos de suavização usando Excel. As imagens e gráficos de tela a seguir são extraídos de uma planilha que foi configurada para ilustrar o ajuste sazonal multiplicativo e a suavização exponencial linear nos seguintes dados de vendas trimestrais do Outboard Marine: Para obter uma cópia do próprio arquivo de planilha, clique aqui. A versão de suavização exponencial linear que será usada aqui para fins de demonstração é a versão de Brown8217s, simplesmente porque ela pode ser implementada com uma única coluna de fórmulas e há apenas uma constante de suavização para otimizar. Normalmente é melhor usar a versão Holt8217s que tem constantes de suavização separadas para nível e tendência. O processo de previsão prossegue da seguinte forma: (i) primeiro os dados são ajustados sazonalmente (ii) então as previsões são geradas para os dados ajustados sazonalmente através de suavização exponencial linear e (iii) finalmente as previsões sazonalmente ajustadas são quasi mensuradas para obter previsões para a série original . O processo de ajuste sazonal é realizado nas colunas D a G. O primeiro passo no ajuste sazonal é calcular uma média móvel centrada (realizada aqui na coluna D). Isto pode ser feito tomando a média de duas médias anuais que são compensadas por um período em relação um ao outro. (Uma combinação de duas médias de compensação ao invés de uma única média é necessária para fins de centralização quando o número de estações é par.) O próximo passo é calcular a relação com a média móvel - i. e. Os dados originais divididos pela média móvel em cada período - o que é realizado aqui na coluna E. (Isso também é chamado de componente quottrend-cyclequot do padrão, na medida em que os efeitos da tendência e do ciclo de negócios podem ser considerados como sendo tudo isso Permanece após a média de dados de um ano inteiro. Naturalmente, as mudanças mês a mês que não são devido à sazonalidade poderia ser determinada por muitos outros fatores, mas a média de 12 meses suaviza sobre eles em grande medida.) O índice sazonal estimado para cada estação é calculado pela primeira média de todas as razões para essa estação particular, que é feita nas células G3-G6 usando uma fórmula AVERAGEIF. As razões médias são então redimensionadas de modo que somam exatamente 100 vezes o número de períodos em uma estação, ou 400, neste caso, o que é feito nas células H3-H6. Abaixo na coluna F, as fórmulas VLOOKUP são usadas para inserir o valor do índice sazonal apropriado em cada linha da tabela de dados, de acordo com o trimestre do ano que ele representa. A média móvel centrada e os dados ajustados sazonalmente acabam parecidos com isto: Note que a média móvel normalmente se parece com uma versão mais lisa da série ajustada sazonalmente, e é mais curta em ambas as extremidades. Uma outra planilha no mesmo arquivo do Excel mostra a aplicação do modelo de suavização exponencial linear aos dados dessazonalizados, começando na coluna G. Um valor para a constante de alisamento (alfa) é inserido acima da coluna de previsão (aqui, na célula H9) e Por conveniência é atribuído o nome de intervalo quotAlpha. quot (O nome é atribuído usando o comando quotInsert / Name / Createquot). O modelo LES é inicializado definindo as duas primeiras previsões iguais ao primeiro valor real da série ajustada sazonalmente. A fórmula usada aqui para a previsão de LES é a forma recursiva de equação única do modelo Brown8217s: Esta fórmula é inserida na célula correspondente ao terceiro período (aqui, célula H15) e copiada para baixo a partir daí. Observe que a previsão do LES para o período atual se refere às duas observações precedentes e aos dois erros de previsão anteriores, bem como ao valor de alfa. Assim, a fórmula de previsão na linha 15 refere-se apenas a dados que estavam disponíveis na linha 14 e anteriores. (É claro que, se desejássemos usar a suavização linear simples em vez de linear, poderíamos substituir a fórmula SES aqui. Também poderíamos usar Holt8217s ao invés de Brown8217s modelo LES, o que exigiria mais duas colunas de fórmulas para calcular o nível ea tendência Que são usados ​​na previsão.) Os erros são computados na coluna seguinte (aqui, coluna J) subtraindo as previsões dos valores reais. O erro médio quadrático é calculado como a raiz quadrada da variância dos erros mais o quadrado da média. (Isto decorre da identidade matemática: VARIANCE MSE (erros) (AVERAGE (erros)) 2.) No cálculo da média e variância dos erros nesta fórmula, os dois primeiros períodos são excluídos porque o modelo não começa a prever até O terceiro período (linha 15 na planilha). O valor ótimo de alfa pode ser encontrado alterando manualmente alfa até que o RMSE mínimo seja encontrado, ou então você pode usar o quotSolverquot para executar uma minimização exata. O valor de alpha que o Solver encontrado é mostrado aqui (alpha0.471). Geralmente é uma boa idéia traçar os erros do modelo (em unidades transformadas) e também calcular e traçar suas autocorrelações em defasagens de até uma estação. Aqui está um gráfico de séries temporais dos erros (ajustados sazonalmente): As autocorrelações de erro são calculadas usando a função CORREL () para calcular as correlações dos erros com elas mesmas retardadas por um ou mais períodos - os detalhes são mostrados no modelo de planilha . Aqui está um gráfico das autocorrelações dos erros nos primeiros cinco lags: As autocorrelações nos intervalos 1 a 3 são muito próximas de zero, mas a espiga no intervalo 4 (cujo valor é 0,35) é ligeiramente problemática - sugere que a Processo de ajuste sazonal não foi completamente bem sucedido. No entanto, é apenas marginalmente significativo. 95 para determinar se as autocorrelações são significativamente diferentes de zero são mais ou menos 2 / SQRT (n-k), onde n é o tamanho da amostra e k é o atraso. Aqui n é 38 e k varia de 1 a 5, então a raiz quadrada-de-n-menos-k é de cerca de 6 para todos eles, e, portanto, os limites para testar a significância estatística de desvios de zero são mais ou menos - Ou-menos 2/6, ou 0,33. Se você variar o valor de alfa à mão neste modelo do Excel, você pode observar o efeito sobre as parcelas de tempo de série e de autocorrelação dos erros, bem como sobre o erro raiz-médio-quadrado, que será ilustrado abaixo. Na parte inferior da planilha, a fórmula de previsão é quotbootstrappedquot para o futuro, simplesmente substituindo as previsões de valores reais no ponto onde os dados reais se esgotou - i. e. Onde o futuro começa. (Em outras palavras, em cada célula onde um valor de dados futuro ocorreria, uma referência de célula é inserida que aponta para a previsão feita para esse período.) Todas as outras fórmulas são simplesmente copiadas para baixo de cima: Observe que os erros para previsões de O futuro são todos computados como sendo zero. Isso não significa que os erros reais serão zero, mas sim apenas reflete o fato de que para fins de previsão estamos assumindo que os dados futuros serão iguais às previsões em média. As previsões de LES resultantes para os dados ajustados sazonalmente são as seguintes: Com este valor específico de alfa, que é ideal para as previsões de um período antecipado, a tendência projetada é ligeiramente alta, refletindo a tendência local observada nos últimos 2 anos ou então. Para outros valores de alfa, pode-se obter uma projeção de tendência muito diferente. Geralmente é uma boa idéia ver o que acontece com a projeção de tendência de longo prazo quando alfa é variado, porque o valor que é melhor para previsão de curto prazo não será necessariamente o melhor valor para prever o futuro mais distante. Por exemplo, aqui está o resultado que é obtido se o valor de alfa é manualmente definido como 0.25: A tendência de longo prazo projetada é agora negativa em vez de positiva Com um menor valor de alfa, o modelo está colocando mais peso em dados mais antigos em A sua estimativa do nível e da tendência actuais e as suas previsões a longo prazo reflectem a tendência descendente observada nos últimos 5 anos, em vez da tendência ascendente mais recente. Este gráfico também ilustra claramente como o modelo com um valor menor de alfa é mais lento para responder a pontos de quoturno nos dados e, portanto, tende a fazer um erro do mesmo sinal para muitos períodos em uma linha. Seus erros de previsão de 1 passo são maiores em média do que aqueles obtidos antes (RMSE de 34,4 em vez de 27,4) e fortemente positivamente autocorrelacionados. A autocorrelação lag-1 de 0,56 excede largamente o valor de 0,33 calculado acima para um desvio estatisticamente significativo de zero. Como uma alternativa ao avanço do valor de alfa para introduzir mais conservadorismo em previsões de longo prazo, um fator quottrend de amortecimento é às vezes adicionado ao modelo para fazer a tendência projetada aplanar após alguns períodos. A etapa final na construção do modelo de previsão é a de igualar as previsões de LES, multiplicando-as pelos índices sazonais apropriados. Dessa forma, as previsões reseasonalized na coluna I são simplesmente o produto dos índices sazonais na coluna F e as previsões de LES estacionalmente ajustadas na coluna H. É relativamente fácil calcular intervalos de confiança para as previsões de um passo à frente feitas por este modelo: primeiro Calcular o RMSE (erro quadrático médio, que é apenas a raiz quadrada do MSE) e, em seguida, calcular um intervalo de confiança para a previsão ajustada sazonalmente, adicionando e subtraindo duas vezes o RMSE. (Em geral, um intervalo de confiança de 95 para uma previsão de um período antecipado é aproximadamente igual à previsão de ponto mais ou menos duas vezes o desvio padrão estimado dos erros de previsão, supondo que a distribuição do erro é aproximadamente normal eo tamanho da amostra É grande o suficiente, digamos, 20 ou mais. Aqui, o RMSE em vez do desvio padrão da amostra dos erros é a melhor estimativa do desvio padrão de futuros erros de previsão porque leva bias, bem como variações aleatórias em conta.) Os limites de confiança Para a previsão ajustada sazonalmente são então reseasonalized. Juntamente com a previsão, multiplicando-os pelos índices sazonais apropriados. Neste caso o RMSE é igual a 27,4 e a previsão ajustada sazonalmente para o primeiro período futuro (Dec-93) é 273,2. O intervalo de confiança ajustado sazonalmente é de 273,2-227,4 218,4 para 273,2227,4 328,0. Multiplicando esses limites por Decembers índice sazonal de 68,61. Obtemos limites de confiança inferior e superior de 149,8 e 225,0 em torno da previsão de ponto Dec-93 de 187,4. Os limites de confiança para as previsões de mais de um período de tempo em geral aumentarão à medida que o horizonte de previsão aumentar, devido à incerteza quanto ao nível e à tendência, bem como aos fatores sazonais, mas é difícil computá-los em geral por métodos analíticos. (A maneira apropriada de calcular limites de confiança para a previsão de LES é usando a teoria ARIMA, mas a incerteza nos índices sazonais é outra questão.) Se você quer um intervalo de confiança realista para uma previsão mais de um período à frente, tomando todas as fontes de A sua melhor aposta é usar métodos empíricos: por exemplo, para obter um intervalo de confiança para uma previsão de duas etapas à frente, você poderia criar outra coluna na planilha para calcular uma previsão de duas etapas para cada período ( Por bootstrapping a previsão one-step-ahead). Em seguida, calcule o RMSE dos erros de previsão em duas etapas e use isso como base para um intervalo de confiança de 2 passos à frente.

No comments:

Post a Comment